On Geometry for Development of Critical Thinking

Mikio Miyazaki
Shinshu University,
Japan

Enhancing Critical Thinking with Proving in Geometry

Proving in Geometry	Critical Thinking
Establishing the universality of properties	Establishing the truth of statements logically
Clarifying implicit theorems in a proof	Revealing implicit evidences in an explanation
Organizing figural properties	Organizing knowledge
Discovering new properties based on proofs	Discovering new knowledge based on explanations
Overcoming counterexamples	Making use of proofs and refutations

Strongly Recommended to Impose Proving in Curriculum for Future Generations

Importance of Proof \& Proving

The teaching and learning of proof is a key component of mathematics and thus of mathematics curricula (Hanna \& de Villiers, 2008; 2012).

TIMSS 2011 results

Country	Average Scale Score	
Korea, Rep. of	613 (2.9)	0
2 Singapore	611 (3.8)	-
Chinese Taipei	609 (3.2)	0
Hong Kong SAR	586 (3.8)	-
Japan	570 (2.6)	0
${ }^{2}$ Russian Federation	539 (3.6)	0
3 Israel	516 (4.1)	0
Finland	514 (2.5)	-
2 United States	509 (2.6)	0
\ddagger England	507 (5.5)	
Hungary	505 (3.5)	
Australia	505 (5.1)	
Slovenia	505 (2.2)	0
${ }^{1}$ Lithuania	502 (2.5)	
TIMSS Scale Centerpoint	500	
Italy	498 (2.4)	

Gap in the Geometry Curriculum

\section*{| Grade | Contents | Proving |
| :--- | :--- | :--- |}

7 Plane Geometry: Symmetry, Basic constructions, Circle and sector
Space Geometry: Solids and spatial figues, Surfae area and volume of solids
8 How to explore figures: Properties of parallel lines and angles, Properties of congruent figures, Conditions of congruent triangles
Proof \& Proving :What is it? How to construct?
Figural properties and proof: Triangles, Quadrilaterals
9 Figures and similarity
Inscribed angle and central angle
Pythagoras' theorem

How do you prove it to establish the universality?

- The sum of the three interior angles of a triangle is 180° -

Okamoto etc. (2012). "Gateway to the future math2", Keirinkan: Osaka.
What kinds of theorems used?

$$
\begin{aligned}
& \angle a=\angle d \\
& \angle b=\angle e \\
& \angle a+\angle b+\angle c=\angle d+\angle e+\angle c \\
& \angle d+\angle e+\angle c=180^{\circ} \\
& \angle a+\angle b+\angle c=180^{\circ}
\end{aligned}
$$

Why is Properties of parallel lines true?

Prove $\angle \mathrm{a}=\angle \mathrm{C}$

Proofs in Textbook

Generic Explanation

Line n is drawn across two parallel lines ℓ and m, as shown in the figure on the right.
What can you say about the measure of
angles $\angle a, \angle b, \angle c$, and $\angle d$?
Proof

When $\ell / / m$ in the figure on the right, corresponding angles $\angle a$ and $\angle b$ are equal and vertical angles
$\angle b$ and $\angle c$ are equal. This means that alternate interior angles $\angle a$ and $\angle c$ are also equal.
In other words,

Properties of parallel lines (corresponding angles)

Why are vertical angles equal?

Vertical angles are equal

Okamoto etc. (2012). "Gateway to the future math2", Keirinkan: Osaka Proofs in Textbook

When two lines intersect as in the figure on the right, four angles are formed around the point of intersection.

Angles opposite each other, such as $\angle a$ and $\angle c$, are called vertical angles.

$\angle b$ and $\angle d$ are also vertical angles.

Generic Explanation

When $\angle b=70^{\circ}, \angle a$ and $\angle c$ are both $180^{\circ}-70^{\circ}$, so we know that $\angle a=\angle c$.

Proof

This relationship can also be expressed

$$
\angle a=180^{\circ}-\angle b, \angle c=180^{\circ}-\angle b
$$

So this holds true no matter what the measure of $\angle b$.

Okamoto etc. (2012). "Gateway to the future math2", Keirinkan: Osaka
Why is it true?
Properties of parallel lines (corresponding angles)
Extend What should we do?
Use a set square to draw a line parallel to line ℓ.

When we use the method in $\mathcal{\ell}$ to draw parallel
lines, we are using the fact that if corresponding angles $\angle a$ and $\angle b$ in the figure on the right are equal, $\ell / / m$. In other words,

$$
\text { If } \angle a=\angle b \text {, then } \ell / / m \text {. }
$$

Figural Construction

Organizing Figural Properties

Sum of inner angles of triangle \uparrow

Properties of parallel lines (Alternate interior angles)

Figural Construction

What can we find from this proof? make sure

the three angles of a triangle add up to 180°.
As you can see in the figure on the right, D is on a line formed by extending side BC of $\triangle \mathrm{ABC}$. Line CE is drawn parallel to side BA and through point C .

In this case,

The alternate interior angles of parallel lines are equal,
so $\angle a=\angle d$. $\cdots \cdots$.(1)
The corresponding angles of parallel lines are equal,

$$
\text { so } \angle b=\angle e . \cdots \cdots \text { (2) }
$$

Knowing (1) and (2) allows us to find the sum of the three
angles of $\triangle \mathrm{ABC}$:

$$
\begin{aligned}
\angle a+\angle b+\angle c & =\angle d+\angle e+\angle c \\
& =\angle \mathrm{BCD}
\end{aligned}
$$

The three points B, C, and D are on the same line, so $\angle \mathrm{BCD}=180^{\circ}$. This means that the sum of the three angles of a

Discovering New Properties Based on Proofs

Properties of interior and exterior angles of triangles

(1) The sum of the three interior angles of a triangle is 180°.
(2) The measure of an exterior angle of a triangle is equal to the sum of the two non-adjacent interior angles.

